

JAYOTI VIDYAPEETH WOMEN'S UNIVERSITY, JAIPUR Faculty of Education & Methodology

Department Name	:	Science & Technology
Program	:	B. Sc B.Ed.
Semester	:	Ist
Course/Subject Name	:	Differential Calculus and Analytical Geometry
TeacherName & Designation	:	Rishi Chaudhary, Assistant Professor

Sr.No.	Course Outcome
1	Demonstrate a clear understanding of fundamental concepts in differential calculus,
	such as limits, continuity, derivatives, and related rates.
2	Grasp the essential concepts of analytical geometry, including the Cartesian coordinate
	system, equations of lines and curves, and transformations.
3	Apply differentiation techniques to find derivatives of algebraic, trigonometric,
	exponential, and logarithmic functions.
4	Utilize differentiation to solve real-world problems involving rates of change and
	optimization.
5	Analyze and graph functions, equations, and inequalities in two and three dimensions.
6	Solve problems related to lines, circles, conics, and other geometric objects using
	algebraic and geometric methods.
7	Determine the continuity of functions and identify points of discontinuity.
8	Gain familiarity with the concept of integration and its connection to finding areas
	under curves.
9	Apply derivatives to analyze motion, including velocity and acceleration.
10	Solve practical problems involving optimization, related rates, and curve sketching.